Time Series Modeling of Disease Occurrence Patterns with SARIMA (Seasonal AutoRegressive Integrated Moving Average)

  • Arie Vatresia Universitas Bengkulu
  • Ferzha Utama Universitas Bengkulu
Keywords: Modeling; Disease; Prediction; Time Series; SARIMA (Seasonal AutoRegressive Integrate Moving Average)

Abstract

Disease is a human health problem. In overcoming existing health problems, predictive analysis is needed to help overcome them early and plan to prevent and control these diseases. This study aims to determine the prediction of disease time patterns in health data modeling at Argamakmur Hospital. By knowing existing disease patterns, information can be provided based on time series patterns. The prediction of this time series pattern uses time series analysis with a seasonal pattern, which takes all possible data for existing patterns to predict and analyze time series to obtain a predictive model. This study uses time series analysis to model seasonal autoregressive integrated moving averages. The results obtained are predictions for the next six months from the best model obtained, namely: data Typhoid Fever disease ARIMA (1.1,1) increased by 3.08%, data Gastroenteritis disease ARIMA(1,0,1) increased 0.51%, data Dyspepsia data ARIMA (0,1,2) increased by 0.55%, data Acute Anemia disease ARIMA(1,0,2) decreased by 0.4%, data bronchopneumonia disease ARIMA(1,0,1) decreased by 0.58%, data for acute diarrhea disease ARIMA(1,0,1) increased 0.2%, data for vertigo ARIMA(1,0,2) decreased 0.64%, data for stroke ARIMA(1,1,1) decreased 0.28%, data tumor ARIMA(1,0,1) decreased 1%, data on asthma ARIMA(1,0,1) decreased 0.21%, data DM disease ARIMA(1,0,1) decreased by 0.47%, and data Pulmonary TB disease ARIMA(1,0,1) decreased by 0.14%. Based on these results, it is suggested that the hospital be advised to increase awareness of Typhoid Fever, gastroenteritis, and Dyspepsia.

References

Zheng, Y., Zhang, L., Wang, C., & dkk. (2021). Predictive analysis of the number of human brucellosis cases in Xinjiang, China. scientific reports, 11:11513.
2. Wang, Y., Xu, C., Wu, W., Ren, J., & dkk. (2020). time series analysis of temporal trends in hemorrhagic fever with renal syndrome morbidity rate in China from 2005 to 2019. Scientific Reports , 10:9609.
3. Astutik, Y. S. (2020). Analisa Penumpang dengan Metode SARIMA (Studi Kasus: Bandar Udara Raja Haji Fisabilillah). Jurnal UJMC, 39-47.
4. Maulana, H. A., Harahap, K. W., Adriyansyah, Rofiroh, & Zainuddin, F. (2019). Permodelan Produksi Kopi Indonesia dengan Menggunakan Seasonal Autoregressive Integrated Moving Average (SARIMA). Jurnal Saintika UNPAM, 1-14.
5. Pressman, R. S. (2012). Rekayasa Perangkat Lunak : Pendekatan Praktisi Edisi 7. Yogyakarta: Penerbit Andi.
6. Connolly, T. C. (2010). In Database Systems A Practical Approach to Design, Implementation, and Management Fifth Edition. Boston: Pearson Education.
7. Han, j. (2006). Data Mining. In Concept and Tecniques Second Edition. morgan kaufmann.
8. Rosa, A. S., & Shalahuddin, M. (2013). Rekayasa Perangkat Lunak. Bandung: Informatika.
9. Bangoria, B. M. (2013). A Survey on Efficient Enhanced K-Means Clustering Algorithm. International Journal for Scientific Research & Development, 1698-1700.
10. Ediyanto. (2013). Pengklasifikasian Karakteristik Dengan Metode K-Means Cluster Analysis. Buletin Ilmiah Mat Star dan Terapanya (Bimaster) Volume 02 Nomor 2, 133-136.
11. Han, J. d. (2006). Data Mining Concepts and Techniques Second Edition. San Francisco: Morgan Kaufmann.
12. HUNG, C. W. (2005). An Efficient k-Means Clustering Algorithm Using Simple Partitioning. JOURNAL OF INFORMATION SCIENCE AND ENGINEERING, XXI(1), 1157-77.
13. Jain, A. M. (1999). Data Clustering: A Review, ACM Computing Suveys, Vol. 31, No. 3.
14. Madhulatha, T. (2012). An Overview On Clustering Methods. IOSR Journal of Engineering, 719-725.
15. Mulyana, D. (2011). Ilmu Komunikasi. Bandung: PT Rosdakarya.
16. Haviluddin. (2011). Memahami Penggunaan UML. Jurnal Informatika Mulawarman.
17. indonesia, R. (2011). Peraturan Bersama Menteri Negara Pendayagunaan Aparatur Negara dan Reformasi Birokrasi, Menteri Pendidikan Nasional, Menteri Dalam Negeri, Menteri Keuangan, dan Menteri Agama Nomor 05/X/PB/2011, SPB/03/M.PAN-RB/10/2011, 48 Tahun 2011, 158/PMK.01/2011, 11.
18. Connolly, T. a. (2010). Database Systems A Practical Approach to Design, Implementation, and Management Fifth Edition. Boston: Pearson Education.
19. Agrawal, A. &. (2013). Global K-Means (GKM) Clustering Algorithm: A Survey. . International Journal of Computer Applications, LIX, 20-24.
20. Dinarti, F., & Martadi. (2015). Orientasi Jalur Seleksi Masuk Perguruan Tinggi Terhadap Perbedaan Prestasi Belajar Mahasiswa Angkatan 2012-2014 Jurusan Pendidikan Seni Rupa Universitas Negeri Surabaya. Jurnal Pendidikan Seni Rupa, 166-172.
21. Santoso, A. B. (2018). Tutorial & Solusi Pengolahan Data Regresi. Surabaya: CV. Garuda Mas Sejahtera.
22. Santoso, S. (2019). Mahir Statistik Parametrik. Jakarta: PT Elex Media Komputindo.
23. Jus'at, I. (2018). Analisa Regresi. Yogyakarta: Rapha Publishing.
24. Suyono. (2018). Analisis Regresi Untuk Penelitian. Yogyakarta: Deepublish.
25. Sunarmintyastuti, L., Alfarisi, S., & Hasanusi, F. S. (n.d.). Peramalan Penentuan Jumlah Permintaan Konsumen Berbasis Teknologi Informasi Terhadap Produk Bordir Pada Kota Tasikmalaya. ISSN 1412-565 X, 288-296.
26. Akil, I. (2018). Referensi Dan Panduan UML 2.4 Singkat Tepat Jelas. Surabaya: CV Garuda Mas Sejahtera.
27. Rasyid, H., & Mansur. (2019). Penilaian Hasil Belajar. Bandung: CV Wacana Prima.
28. Afkarina, N. K., Widodo, A. W., & Furqon, M. T. (2019). Implementasi Regresi Linier Berganda Untuk Prediksi Jumlah Peminat Mata Kuliah Pilihan. Pengembangan Teknologi Informasi Dan Ilmu Komputer, 10462-10467.
29. Amiruddin, & Ishak, R. (2018). Prediksi Jumlah Mahasiswa Registrasi Per Semester Menggunakan Linier Regresi Pada Universitas Ichsan Gorontalo. ILKOM Jurnal Ilmiah, 136-143.
30. Putri, V. W., Saputra, R., Rayendra, R., & Mustakim. (2017). Penerapan Multiple Regression Dalam pendugaan Awal Kelulusan Mahasiswa. Seminar Nasional Teknologi Informasi, Komunikasi Dan Industri, 194-200.
31. L, C. C., Jangamshetti, D. S., & Sonoli, S. (2018). Multiple Linear Regression Analysis For Prediction Of Boiler Losses And Boiler Efficiency. International Journal Of Instrumentation And Control System, 1-9.
32. Mohd, T., Jamil, S., & Masrom, S. (2020). Multiple Linear Regression On Building Price Prediction With Green Building Determinant. International Journal Of Advanced Science And Technology, 1137-1148.
33. Enterprise, J. (2015). Membuat Website PHP Dengan CodeIgniter. Jakarta: PT Elex Media Komputindo.
34. Suparno. (2018). Seri Pengayaan Pembelajaran Matematika Statistika. Jakarta Barat: PT Sunda Kelapa Pustaka.
35. Amrin. (2016). Data Mining Dengan Regresi Linier Berganda Untuk Peramalan Tingkat Inflasi. Jurnal Techno Nusa Mandiri Vol. XIII, 74-79.
36. Primadasa, D. G., & Muharam, H. (2015). Analisis Faktor-Faktor Yang Mempengaruhi Dividend Payout Ratio Pada Perusahaan Manufaktur Yang Listed Di Bei Tahun 2008-2012. Diponegoro Journal Of Management, 1-15.
37. Defiyanti, S. (2013). Analisis Dan Prediksi Kinerja Mahasiswa Menggunakan Teknik Data Mining. Syntak Vol.2 Ed.2, 1-8.
38. Putro, R. Y., & Kamal, M. (2013). Analisis Pengaruh Brand Reputation, Brand Competence, Dan Brand Liking Terhadap Trust In Brand Pada Konsumen Windows Phone Nokia Di Surabaya. Jurnal Studi Manajemen & Organisasi, 178-185.
39. Raharjo, S. (2019, Mei). Cara Uji Linearitas Menggunakan Grafik Scatter Plot dengan SPSS. Retrieved from SPSS Indonesia: https://www.spssindonesia.com/2019/05/uji-linearitas-grafik-scatter-plot-spss.html
40. Pratomo, D. S., & Astuti, E. Z. (2015). Analisis Regresi Dan Korelasi Antara Pengunjung Dan Pembeli Terhadap Nominal Pembelian Di Indomaret Kedungmundu Semarang Dengan Metode Kuadrat Terkecil.
41. Santi, R. C. (2012). Implementasi Sistem Persamaan Linier Menggunakan Metode Aturan Cramer. Jurnal Teknologi Informasi Dinamik Volume 17, 34-38.
42. Wulandari, H. R. (2017). Forecasting menggunakan metode Generalized SARIMA dengan Pendekatan IRLS untuk data PUAB di Jakarta. Semarang: Jurusan Matematika Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Negeri Semarang.
43. DinKes. (2017). Profil. Retrieved Agustus 22, 2019, from Dinas Kesehatan Kabupaten Bogor: http://dinkes.bogorkab.go.id/profil/
44. pusdatin. (2014). Pusat Data dan Informasi. Retrieved Agustus 25, 2019, from Kementerian Kesehatan Republik Indonesia: http://www.pusdatin.kemkes.go.id/
45. Peixeiro, M. (2019, agustus 7). The Complete Guide to Time Series Analysis and Forecasting. Retrieved February 4, 2021, from towards data science: https://towardsdatascience.com/the-complete-guide-to-time-series-analysis-and-forecasting-70d476bfe775
46. Sa'adah, A. F., Ispriyanti, D., & Suparti. (2014). Prediksi Tinggi Pasang Air Laut Di Kota Semarang Dengan Menggunakan Metode Seasonal Autoregressive Integrated Moving Average (SARIMA) Dan Deteksi Outlier. Jurnal Gaussian, 273-282.
47. Durrah, I. F., Yulia, Parhusip, P. T., & Rusyana, A. (2018). Peramalan Jumlah Penumpang Pesawat Di Bandara Sultan Iskandar Muda Dengan Metode SARIMA (Seasonal Autoregressive Integeated Moving Average). Jurnal of Data Analysis, 01--11.
48. Kafara, Z., Rumlawang, F., & Sinay, L. (2017). Peramalan Curah Hujan Dengan Pendekatan Seasonal Autoregressive Integrated Moving Average (SARIMA) (Studi kasus:Curah Hujan Bulanan di kota Ambon, Provinsi Maluku). Jurnal Ilmu matematika dan Terapan, 63-74.
49. Ruhiat, D., & Effendi, A. (2018). Pengaruh Faktor Musiman Pada Pemodelan Deret Waktu Untuk Peramalan Debit Sungai Dengan Metode SARIMA. Jurnal Teori dan Riset Matematika (TEOREMA), 2597-7237.
50. Hidayatuloh, A. (2020). Pengantar Pemrograman R dan RStudio. Bogor: Fakultas Matematika dan Ilmu Pengetahuan Alam (FMIPA) Institut Pertanian Bogor (IPB).
51. Lestari, N., & Wahyuningsih, N. (2012). Peramalan Kunjungan Wisata Dengan Pendekatan Model SARIMA (Studi Kasus: Kusuma Agrowisata). Jurnal Sains dan Seni ITS, 2301-928X.
52. Wojcik, S., Bijral, A. S., Johnston, R., & dkk. (2021). Survey data and human computation for improvedflu tracking. Nature Communications, 12:194.
Published
2023-04-25
How to Cite
1.
Vatresia A, Utama F. Time Series Modeling of Disease Occurrence Patterns with SARIMA (Seasonal AutoRegressive Integrated Moving Average). woh [Internet]. 2023Apr.25 [cited 2025Jan.18];6(2):154-66. Available from: https://jurnal.fkmumi.ac.id/index.php/woh/article/view/739
Section
Articles