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ABSTRACT 

Dengue is a global health issue threatening public health, particularly in developing countries. Effective disease 

surveillance is critical to anticipate impending outbreaks and implement appropriate control responses. However, 

delays in dengue case reporting are frequent due to human resource shortfalls. Improved outbreak predictive 

capacity also requires additional input on vector presence and abundance, which is currently not captured in the 

surveillance platform. Thus, we developed a prototype AI application, “Dengue Forecasting,” that leverages 

machine learning methods in filing the dengue case report and incorporates dengue vector and climatic parameters. 

This application simplifies the recording of dengue cases, vector abundance (Angka Bebas Jentik/ABJ/Larvae-

Free Index) and selected climatic variables (sun exposure, temperature, humidity, wind speed, and precipitation) 

in Bandung City. The relevant data were extracted from Indonesia's Ministry of Health and the Meteorological, 

Climatological, and Geophysical Agency. The entire process, from developing the model to deployment, was 

conducted under R programming language version 4.2.2 using packages (caret, shiny.io). The linear regression 

model demonstrated the highest precision (RMSE= 268.32 and MAE= 164.1) in predicting the dengue cases and 

outbreaks. We also applied this to the application deployment. “Dengue Forecasting” has the potential to assist 

policymakers at the district level, complementing Dengue EWARS, in anticipating and mitigating dengue 

outbreaks, especially in Bandung City. 
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INTRODUCTION 

Dengue is a global health issue threatening public health, particularly in developing countries. 

The global burden of dengue fever has increased significantly over the past few decades. If untreated, 

dengue can trigger an outbreak and cause death. This condition causes a significant burden on society, 

health systems, and the economy in most tropical countries in the world.(1) According to the World 

Health Organization (WHO), dengue fever cases reported to WHO increased from 505,430 in 2000 to 

5.2 million cases in 2019, with most cases being asymptomatic or mild and therefore not reported. One 

modeling estimate suggested 390 million dengue virus infections yearly, with 96 million visible 

infections.(2) The disease has been endemic in more than 100 countries, including Indonesia.(3) By the 

end of 2022, Indonesia reported 143.000 dengue cases, with the highest incidence in three provinces, 

including West Java, East Java and Central Java. More than 50% of the national cases are reported from 

these regions and 1,236 deaths were reported in 2022.(4) Bandung City, the capital city of the West Java 

province, has been affected heavily by dengue. There were 3,743 cases in 2021, which increased to 

5,205 cases in 2022. Dengue incidence rate (IR) also elevated from 145 per 100,000 population in 2021 

to 201 per 100,000 population in 2022.(5) 

Dengue control is very complex and requires multisectoral collaboration and integrated 

approaches, including coordination and leadership, preparedness and response, case diagnostic, health 

care facilities, operation support and logistics, case surveillance and management, capacity building, 

risk communication, community engagement and integrated vector management (IVM). (3,6) Dengue 

control programs encountered many challenges. For example, environmental and vector controls require 

massive infrastructure investment and long-term human behaviour approaches to improve sanitation.(6,7) 

Moreover, chemical methods have been used to control Aedes larvae and mosquitoes for long periods, 

but some considerations arise from the method, including accessibility, environmental toxicity, and 

insecticide resistance. Other ecological controls had been introduced, such as using larvivorous fish to 

eliminate the mosquito larvae and Wolbachia pipientis.(8–11) Although the Indonesian government has 

put a lot of effort and control measures for the disease, the incidence and fatality rate are still high 

because of multiple factors such as the absence of active surveillance, insufficient case management, 

inadequate diagnostic tools, mobilization and urbanization of dengue fever carriers, community density, 

availability of drugs and vaccines and lack of community participation.(12–15) 

Artificial Intelligence (AI), including Machine Learning (ML) and Deep Learning (DL) 

algorithms, has been introduced in many disciplines, including public health and healthcare settings. 

The use of AI in public health will help public health practitioners perform any activities automatically, 

which means it can reduce the workload of health workers, reduce human errors, and improve 

productivity.(16) One of the advantages of AI is the ability to analyze a large and complex dataset to 

create models and predictions quickly and efficiently.(17,18) As explained above, one of the significant 

issues in dengue control is the lack of surveillance and prediction systems, which leads to delayed 

responses, preparedness and inappropriate regulation. AI can help to fill this gap for better decision 

making and disease control. This paper presents a prototype to utilize AI for dengue forecasting in 
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Bandung City to assist policymakers and public health practitioners in controlling and mitigating the 

dengue outbreak. 

 

METHODS AND MATERIALS 

This study employs machine learning techniques, including Linear Regression, Ridge 

Regression, Lasso Regression, Regression Tree, Random Forest, and Support Vector Regression, to 

determine the most accurate model for predicting dengue fever trends from 2018 to 2022. 

Lasso and Ridge regression are widely used methods in linear regression to tackle overfitting 

and enhance the model's generalization ability. They incorporate a regularization component into the 

conventional linear regression cost function. A regression tree is a kind of decision tree employed in 

machine learning to handle regression problems. It takes the form of a hierarchy where every internal 

node makes a decision based on a feature, and each leaf node provides a prediction for the target 

variable.(18) 

In contrast, Random Forest is an ensemble learning technique that constructs numerous decision 

trees during training and produces the average prediction (for regression tasks) of these individual trees. 

Another ensemble method is the Support Vector Machine (SVM). The SVM is a supervised learning 

algorithm that aims to find the hyperplane that best separates the data points into different classes while 

maximizing the margin. Although, this algorithm does not extract the variable of importance. (18) 

 

 

Figure 1. List of predictors and dependent variable 

 

The data utilized consists of climate data from the Meteorology, Climatology, and Geophysics 

Agency, dengue cases, and vector density (Angka Bebas Jentik/ABJ) from the Ministry of Health. The 

research design is illustrated in the diagram above (Figure 1). 

We divided the data into training and testing sets. The training set forms the basis of the model, 

while the testing set is used to assess the model's performance. We allocated 80% of the data for training 

and 20% for testing.
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Figure 2. Training and Testing Data Partition 

 

 

Figure 3. Exploratory Data Analysis of Variables 

 

The training data spanned from 2018 to 2021, while the entire year of 2022 was used for testing. 

Additionally, we employed a cross-validation method with 5 folds. The machine learning algorithms 

used in this process were as follows: 
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Table 1. Algorithm and Hyperparameter values 

 

Algorithm Hyperparameter values 

Linear Regression  

Ridge Regression alpha = 0 

 lambda = 61 

Lasso Regression alpha = 1 

 lambda = 31 

Regression Tree max depths = 5 

Random Forest max depths = 5 

 ntrees = 120 

SVR epsilon = 0.5 

 

 

The model's performance will be evaluated using the Root Mean Squared Error (RMSE) for the training 

test. We were using the testing data where we will assess the RMSE, Mean Absolute Error (MAE), and 

R2. The lowest RMSE and MAE will be selected as the best model.(19) 

 

 

Formula 1: RMSE and MAE formula 

 

The most effective model will be determined based on these indicators. In this study, we used R version 

4.3.0 with a caret package.(20) 

RESULT 

Table 2. Model Performances 
 

 Models Mean 

RMSE 

Mean MAE  

 Linear Regression 268.323 164.106  

 Ridge Regression 303.948 182.426  

 
Lasso Regression 307.337 181.424 

 

 
Regression Tree 326.447 206.073 

 

 
Random Forest 298.039 171.666 

 

 
SVR 280.195 172.622 
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The analysis in the table shows that the Linear Regression model is the best model with the lowest 

RMSE and MAE. We found that the least number of RMSE and MAE was associated with the Linear 

Regression Model. It means that the model has a better result. 

Thorough analysis, the Linear Regression model was determined as the one that performs most 

effectively in predicting dengue outbreaks, supported by its lower Root Mean Square Error (RMSE) of 

268.32 and Mean Absolute Error (MAE) of 164.1. Furthermore, our investigation identifies ABJ and 

average wind speed as significant influencers on dengue occurrences. 

Table 3. Variable of Importance of Models 
 

No Linear Reg Ridge Reg Lasso Reg Regression Tree Random 

Forest 

SVM* 

1 Larvae-Free Index Average Wind 

Speed 

Average Wind 

Speed 

Average Wind 

Speed 

Average Wind 

Speed 

N/A 

2 Average Wind 

Speed 

Larvae-Free Index Larvae-Free Index Average Humidity Larvae-Free 

Index 

N/A 

3 Rainfall Rate Sun Exposure Sun Exposure Larvae-Free Index Average 

Humidity 

N/A 

4 Sun Exposure Average 

Temperature 

Average Humidity Sun Exposure Average 

Temperature 

N/A 

5 Average 

Temperature 

Average Humidity Average 

Temperature 

RR Sun Exposure N/A 

6 Average Humidity Rainfall Rate Rainfall Rate Average 

Temperature 

Precipitation N/A 

*N/A= Not available 

In the table, "Ovitrap" and "Average Wind Speed" emerged as the top two variables of importance 

across all models. 

 

DISCUSSION 

Machine learning algorithms (ML) are gaining significant interest in the creation of predictive 

models to forecast and monitor dengue transmission rates. Numerous studies have demonstrated the 

effectiveness of machine learning algorithms to predict the occurrence of cases and outbreaks. Indeed, 

there exists a wide array of potential machine-learning algorithms for predicting this disease.(21–23) 

This study utilized several machine learning algorithms: Linear Regression, Ridge Regression, 

Lasso Regression, Support Vector Machine (SVM), Random Forest, and Decision Tree. Those 

algorithms were based on the previous studies.(24–27) Those methods also followed K-fold cross- 

validation (CV) with five folds, which was one of the popular choices for machine learning analysis.(27) 
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Figure 4. The Comparisons of Observation (tosca) and Predictions. The ideal model would exhibit the closest 

pattern to the observed data. Among the models evaluated, including Linear Regression, Ridge Regression, and 

SVR/SVM, it was found that these models could detect the sharp incline in cases in 2021. Specifically, Linear 

Regression emerged as the most effective model for dengue prediction. 

 

The results showed that linear regression became the best performance model among every 

model. These results were different from previous studies in machine learning utilization for dengue 

cases, where ensemble models became the best preferences for machine learning analysis.(28,29) This 

might be caused by the small sample size of this study (only 2018 to 2022), and the model only leveraged 

a single model to run the prediction compared to the ensemble models. 

The climate factors showed an association with dengue cases. Studies showed that precipitation, 

humidity, rainfall, and temperature possibly affected dengue transmission.(30) Temperature became an 

important factor in the incubation period and the duration of the gonotrophic cycle.(31,32) On the contrary, 

this research found that average wind speed emerged as the most significant variable. In machine 

learning, this indicates the importance of features or variables to the model. Various studies have 

suggested that monthly wind speed is inversely correlated with dengue incidence. One potential 

explanation for the impact of wind speed is the reduction in mosquitoes' activity in seeking hosts. This 

decreased activity can lead to fewer instances of egg-laying and interactions with hosts. Wind may deter 

mosquitoes from tracking scent trails emitted by hosts, possibly by impeding their ability to fly against 

the wind or by dispersing the chemical signals produced by hosts.(33,34) 

WHO recommends vector controls as a fundamental approach to preventing disease and 
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responding to outbreaks of Dengue.(35) Indonesia's Ministry of Health translated in using the 

measurement for vector density, named ABJ (several studies using Larvae-Free Index). These larval and 

pupal indices remain the most used parameters to measure vector infestation in the community.(36,37) This 

method involves visually inspecting various potential breeding sites for Aedes mosquitoes. The 

inspection covers large and small water reservoirs such as drums, buckets, animal water troughs and 

other containers. If no larvae are initially spotted, a brief observation period of approximately 30 seconds 

to 1 minute is recommended to ensure thorough examination. For smaller breeding sites like flower 

vases, potted plants, and bottles with murky water, it may be necessary to relocate the water to facilitate 

inspection. In cases where inspection is challenging due to darkness or turbidity, a flashlight can be used 

to aid in the identification of larvae.(38) These aggregate data were obtained by dividing the number of 

houses or buildings where no mosquito larvae were found within a specific time frame by the total 

number of houses or buildings inspected, then multiplying the result by 100%. An area is deemed 

larvae-free when the value is equal to or greater than 95%, suggesting a reduced risk of dengue 

transmission.(39,40) Those data were recorded in an Indonesia's Ministry of Health Apps named 

SILANTOR or Surveilans Vektor dan Binatang Kuman Pembawa Penyakit. 

The Ovitrap Index became the second variable of importance in every model. These findings 

are similar to a previous study in Bandung City.(41) On the other hand, this vector measurement is not 

recognized and recommended by WHO as the monitoring Ae. aegypti. Moreover, some previous studies 

concluded this index does not correlate with the dengue incidence.(37,42) 

This study has several limitations, and the small sample might affect the machine learning 

performance. SILANTOR is a relatively new application in the Ministry of Health (since 2018), and the 

report system would rely on volunteers. However, the Ministry of Health or the District Health Office 

did not consistently monitor the volunteers and the larva survey. This might lead to a problem in data 

collection and its timely input. Second, there was a delay in the dengue case reporting for 

approximately several weeks by the Ministry of Health. This will affect the imprecise time series data 

for modelling. This machine learning coul be possible way to solve those gaps. 

Moreover, this study does not cover many other potential aspects that might contribute to dengue 

cases in Bandung City. One of the possibilities is population mobility.(43) Since Bandung City became 

the fourth biggest city in Indonesia, urbanization is inevitable. Studies in Thailand and Brazil suggested 

the impact of human movement on dengue transmission in local areas.(44–46) 

Follow-up research related to the other machine learning algorithms and hyperparameter tuning 

is needed to figure out how the model can be tailored to the location where it functions. Besides, there 

will be a requirement to collect more samples from the district health office to verify the data before it 

has been used to perform the machine learning model. Thus, it may avoid bias that can be incorporated 

into the performed model. 
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CONCLUSION AND RECOMMENDATIONS 

In conclusion, this study contributes to the growing body of research on dengue transmission 

prediction through the application of machine learning algorithms. The findings highlight the 

effectiveness of linear regression in forecasting dengue cases, underscoring its potential utility in public 

health surveillance efforts. Notably, climate factors, exceptionally average wind speed, emerged as 

significant predictors, shedding light on the complex dynamics of dengue transmission. Overall, this 

study represents a significant step towards developing effective predictive models for dengue 

transmission, offering valuable insights that can inform evidence-based decision-making and ultimately 

contribute to the prevention and control of this vector-borne disease. 
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